首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3148篇
  免费   345篇
  国内免费   146篇
化学   2464篇
晶体学   29篇
力学   109篇
综合类   7篇
数学   296篇
物理学   734篇
  2023年   34篇
  2022年   35篇
  2021年   61篇
  2020年   80篇
  2019年   111篇
  2018年   76篇
  2017年   65篇
  2016年   139篇
  2015年   133篇
  2014年   172篇
  2013年   240篇
  2012年   298篇
  2011年   318篇
  2010年   199篇
  2009年   157篇
  2008年   244篇
  2007年   197篇
  2006年   205篇
  2005年   162篇
  2004年   144篇
  2003年   106篇
  2002年   104篇
  2001年   29篇
  2000年   26篇
  1999年   33篇
  1998年   22篇
  1997年   31篇
  1996年   37篇
  1995年   17篇
  1994年   17篇
  1993年   13篇
  1992年   14篇
  1991年   10篇
  1990年   13篇
  1989年   10篇
  1988年   12篇
  1987年   12篇
  1986年   3篇
  1985年   10篇
  1984年   13篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
  1969年   2篇
  1968年   2篇
  1938年   1篇
排序方式: 共有3639条查询结果,搜索用时 31 毫秒
31.
A galactose‐appended drug delivery system released camptothecin (CPT) to lysosomes of HepG2 hepatoma cells, resulting in the cell resistance to the anticancer drug. We found that the resistance to CPT is caused by alteration of the drug release from the prodrug in lysosomes, emphasizing that the final delivery locations may critically influence drug efficacy.  相似文献   
32.
33.
An efficient chemical way to finely control the layer-by-layer stacking of inorganic nanosheets (NS) is developed by tuning the type and composition of intercalant ion, and the reaction temperature for restacking process. The finely controlled stacking of NS relies on a kinetic control of the self-assembly of NS in the presence of coordinating organic cations. A critical role of organic cations in this assembly highlights the importance of the appropriate activation energy. Of prime importance is that a fine-control of the interstratification of 2D NS is highly effective not only in tailoring its pore structure but also in enhancing its electrode activity. The present study clearly demonstrates that the kinetically controlled restacking of NS provides a facile and powerful method to tailor their stacking number and functionality.  相似文献   
34.
确定飞行员安全行为指标的权重,对发现民航飞行员飞行安全风险的短板,提高民航飞行安全性具有重要意义.基于指标权重比,提出了一种飞行员安全行为指标权重算法.并以此算法分析了职业安全意识、飞行情景意识、特情应变能力以及机组资源管理能力等指标对飞行员安全行为的影响程度,研究可为飞行员安全行为风险管理提供依据,对安全飞行具有积极的指导意义.  相似文献   
35.
In this study, we start from a multi-source variant of the two-stage capacitated facility location problem (TSCFLP) and propose a robust optimization model of the problem that involves the uncertainty of transportation costs. Since large dimensions of the robust TSCFLP could not be solved to optimality, we design a memetic algorithm (MA), which represents a combination of an evolutionary algorithm (EA) and a modified simulated annealing heuristic (SA) that uses a short-term memory of undesirable moves from previous iterations. A set of computational experiments is conducted to examine the impact of different protection levels on the deviation of the objective function value. We also investigate the impact of variations of transportation costs that may occur on both transhipment stages on the total cost for a fixed protection level. The obtained results may help in identifying a sustainable and efficient strategy for designing a two stage capacitated transportation network with uncertain transportation costs, and may be applicable in the design and management of similar transportation networks.  相似文献   
36.
Solid-state lithium batteries are promising and safe energy storage devices for mobile electronics and electric vehicles. In this work, we report a facile in situ polymerization of 1,3-dioxolane electrolytes to fabricate integrated solid-state lithium batteries. The in situ polymerization and formation of solid-state dioxolane electrolytes on interconnected carbon nanotubes (CNTs) and active materials is the key to realizing a high-performance battery with excellent interfacial contact among CNTs, active materials and electrolytes. Therefore, the electrodes could be tightly integrated into batteries through the CNTs and electrolyte. Electrons/ions enable full access to active materials in the whole electrode. Electrodes with a low resistance of 4.5 Ω □−1 and high lithium-ion diffusion efficiency of 2.5×10−11 cm2 s−1 can significantly improve the electrochemical kinetics. Subsequently, the batteries demonstrated high energy density, amazing charge/discharge rate and long cycle life.  相似文献   
37.
The full reaction photosynthesis of H2O2 that can combine water-oxidation and oxygen-reduction without sacrificial agents is highly demanded to maximize the light-utilization and overcome the complex reaction-process of anthraquinone-oxidation. Here, a kind of oxidation-reduction molecular junction covalent-organic-framework (TTF-BT-COF) has been synthesized through the covalent-coupling of tetrathiafulvalene (photo-oxidation site) and benzothiazole (photo-reduction site), which presents visible-light-adsorption region, effective electron-hole separation-efficiency and photo-redox sites that enables full reaction generation of H2O2. Specifically, a record-high yield (TTF-BT-COF, ≈276 000 μM h−1 g−1) for H2O2 photosynthesis without sacrificial agents has been achieved among porous crystalline photocatalysts. This is the first work that can design oxidation-reduction molecular junction COFs for full reaction photosynthesis of H2O2, which might extend the scope of COFs in H2O2 production.  相似文献   
38.
The utilization of carbon resources stored in plastic polymers through chemical recycling and upcycling is a promising approach for mitigating plastic waste. However, most current methods for upcycling suffer from limited selectivity towards a specific valuable product, particularly when attempting full conversion of the plastic. We present a highly selective reaction route for transforming polylactic acid (PLA) into 1,2-propanediol utilizing a Zn-modified Cu catalyst. This reaction exhibits excellent reactivity (0.65 g gcat−1 h−1) and selectivity (99.5 %) towards 1,2-propanediol, and most importantly, can be performed in a solvent-free mode. Significantly, the overall solvent-free reaction is an atom-economical reaction with all the atoms in reactants (PLA and H2) fixed into the final product (1,2-propanediol), eliminating the need for a separation process. This method provides an innovative and economically viable solution for upgrading polyesters to produce high-purity products under mild conditions with optimal atom utilization.  相似文献   
39.
In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)32+/Fe(bpy)32+) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 μmol g−1 h−1) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis.  相似文献   
40.
Electrochemical CO2 reduction (CO2R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13CO2/12CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2R in acidic media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号